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A non-linear, physics-based model of the longitudinal dynamics for an air-breathing
hypersonic vehicle is developed. The model is derived from first principles and captures
the complex interactions between the propulsion system, aerodynamics, and structural
dynamics. Unlike conventional aircraft, hypersonic vehicles require that the propulsion
system be highly integrated into the airframe. Furthermore, hypersonic aircraft tend to
have very lightweight, flexible structures that have low natural frequencies. Therefore,
the first bending mode of the fuselage is important as its deflection affects the amount
of airflow entering the engine, thus influencing the performance of the propulsion system.
The equations-of-motion for the flexible aircraft are derived using Lagrange’s Equations.
The equations-of-motion capture inertial coupling effects between the pitch and normal
accelerations of the aircraft and the structural dynamics. The linearized aircraft dynamics
are shown to be unstable, and in most cases, exhibit non-minimum phase behavior. The
linearized model also indicates that there is an aeroelastic mode that has a natural fre-
quency more than twice the frequency of the fuselage bending mode. Furthermore, the
short-period mode is very strongly coupled with the bending mode of the fuselage.

Introduction

Air-breathing hypersonic aircraft are seen as a possible solution to making access to space routine and
affordable. Research into air breathing hypersonics began during the 1960’s and continued through the
1990’s with the National Aerospace Plane. After the cancellation of the National Aerospace Plane in the
early 1990’s, there have been a handful of follow-on programs that were mostly intended to demonstrate
the feasibility of the various technologies needed to achieve sustained hypersonic flight. The most recent
example has been NASA’s successful flight tests of the scramjet powered X-43A in 2004.

In the literature, there have been several papers that discuss the challenges associated with the dynamics
and control of air-breathing hypersonic vehicles (HSVs).1, 2 Air-breathing hypersonic vehicles, similar to that
shown in Figure 1, have a tightly integrated airframe and scramjet propulsion system. The configuration
in Figure 1 is very typical of an air-breathing hypersonic vehicle. The design is such that the forward
fuselage of the aircraft, in conjunction with the bow shock, acts as a compression system for the scramjet
propulsion system. The pressure distribution on the forebody also produces lift and a nose-up pitching
moment. Downstream of the scramjet engine, the aircraft is shaped such that there is an external expansion
of the exhaust gases. The pressure on the aftbody is a function of the pressure of the exhaust gas as it
exits the scramjet engine. The expansion of the exhaust gas contributes to the lift of the vehicle, partially
offsets the drag, and balances the vehicle with a nose-down pitching moment. With the engine below the
center-of-gravity, the thrust produces a nose-up pitching moment that must be balanced by the elevator.
The structural modes for this class of vehicle also play an important role. The vibrating, forward fuselage
effectively changes the pressure distribution over the forebody of the aircraft since it changes the apparent
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Figure 1. X-43 Hypersonic Vehicle Concept

turn angle of the flow. The resulting changes in the pressure distribution over the aircraft are realized
downstream not only as thrust perturbations, but lift, drag and pitching moment perturbations as well.

In this paper, we present a model that captures the structural, aerodynamic, and propulsion system
coupling. The first attempt at a comprehensive analytical model of the longitudinal dynamics of an HSV
was undertaken by Chavez and Schmidt.3 The approach taken here differs from that followed by Chavez and
Schmidt.3 To begin, they assumed the geometry shown in Figure 2. To estimate the aerodynamic forces and
moments on the vehicle, Newtonian Impact Theory was employed. The use of Newtonian Impact Theory
allowed for a straightforward determination of the expressions for the pressures acting on the vehicle. The
pressures were dependent upon vehicle Mach number, freestream pressure, angle-of-attack, and the vehicle
geometry. These expressions were then manipulated to give the total aerodynamic forces on the vehicle. The
resulting equations were then linearized to give analytical expressions for the stability and control derivatives.
Ultimately, requirements and control laws for the Chavez/Schmidt HSV were synthesized.1, 4
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Figure 2. HSV Geometry from Reference 3

The approach of Rudd and Pines5 was to apply a computational fluid dynamics code written to opti-
mize the design a caret-wing-wedge hypersonic wave rider. The code was then used to study the propul-
sion/airframe integration and to estimate the stability and control derivatives. These stability and control

2



derivatives were then compared to those estimated using “hypersonic piston theory.” The vehicle design
included a translating engine cowl to maintain a shock-on-lip condition. An LQR control design was per-
formed for the stability and control derivatives derived using both approaches. As expected, the piston
theory approach was not able to account for the integrated airframe/propulsion system. As a result, the
controller designed using the piston theory estimates for the stability and control derivatives was unstable
in the non-linear 3DOF simulation that used the stability and control derivatives calculated using the CFD
code.

Two models from NASA include the GHAME model from Dryden Flight Research Center, and the NASA
Langley model. The latter aircraft is a canard-configured, generic winged-cone configuration that is intended
to be representative of a single-stage-to-orbit accelerator type of vehicle. The stability and control derivatives
were estimated using a subsonic/supersonic panel code and a hypersonic local surface inclination method.
The GHAME model is also a single-stage-to-orbit aircraft.

Aerodynamic and Propulsive Force Determination

The approach that is taken here extends the work done by Chavez and Schmidt.3 The primary difference
being that instead of using Newtonian Impact Theory to calculate the surface pressure, we apply oblique-
shock and Prandtl-Meyer theory. Additionally, our vehicle uses a translating cowl door that is used to
maintain a shock-on-lip condition for off-design flight conditions. To position the cowl-door necessitates
that one is able to determine the angle that the oblique shock makes relative to the freestream. Newtonian
Impact Theory assumes that the oblique bow shock lies very close to the body as M∞ → ∞. In actuality,
the angle that the oblique shock makes relative to the freestream is not indicative of its actual angle at the
lower end of the hypersonic speed range. Therefore, we are relegated to using oblique-shock theory for our
pressure calculation on the lower forebody in order to know the angle of the oblique shock..

The vehicle geometry that was chosen for this work is shown in Figure 3. It is assumed that the vehicle
shown has unity depth into the paper and that air behaves as if it is a perfect gas (i.e., γ = cp/cv = 1.4 is a
constant).
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Figure 3. Hypersonic Air-breathing Vehicle Geometry

Forebody and Upper Surface Pressures

The pressure on the forebody is determined by either oblique shock theory or Prandtl-Meyer flow and is
dependent upon the angle-of-attack and the amount of structural bending. For angles-of-attack greater than
the angle −τ1�, the flow behaves as if it is flowing over a concave corner; therefore, an oblique shock occurs
ahead of the lower forebody. The shock angle with respect to the horizontal (in this case taken to be the
direction of the oncoming freestream flow), is a function of angle-of-attack and τ1�. The shock angle is
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calculated by solving the following polynomial for sin2 θs

sin6 θs + b sin4 θs + c sin2 θs + d = 0 (1a)

b = −M
2
1 + 2
M2

1

− γ sin2 δ (1b)

c =
2M2

1 + 1
M4

1

+
(

(γ + 1)2

4
+
γ − 1
M2

1

)
sin2 δ (1c)

d = −cos2 δ
M4

1

(1d)

where M∞ is the Mach number upstream of the oblique shock, γ is the ratio of specific heats, and δ = τ1� +α
is the angle (in radians) through which the flow is turned. The angle of the oblique shock is given by the
second root of Equation (1a) as this particular wave angle corresponds to the weak shock solution. The
smallest of the three roots corresponds to a decrease in entropy. Since this solution is not physically realizable,
it is discarded. The largest root is the strong shock solution, and is not of interest as the back pressures are
not strong enough to support this solution.

Once the shock angle is determined, the pressure, temperature, and Mach number behind the oblique
shock can be determined from the relations:6

p2

p1
=

7M2
1 sin2 θs − 1

6
(2)

T2

T1
=

(7M2
1 sin2 θs − 1)(M2

1 sin2 θs + 5)
36M2

1 sin2 θs

(3)

M2
2 sin2(θs − δ) =

M2
1 sin2 θs + 5

7M2
1 sin2 θs − 1

(4)

where M1, T1, p1 are the Mach number, static temperature, and static pressure upstream of the oblique
shock.

On the other hand, in the cases where we have flow over a convex corner, we will have a Prandtl-Meyer
expansion.7 The process for calculating the new Mach number after the expansion requires that one first
determine the angle ν1. The angle ν1 is the angle through which a flow at Mach 1 must be expanded to
reach the freestream supersonic Mach number M1, and is given by

ν1 =
√
γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2
1 − 1) − tan−1

√
M2

1 − 1 (5)

The total angle ν2 through which the flow is turned is ν2 = ν1 + δ where δ is the angle of the expansion
ramp in radians. To determine the resulting Mach number after the expansion, M2, the following equation
must be solved numerically:

f(M2) =
√
γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2
2 − 1) − tan−1

√
M2

2 − 1 − ν2 (6)

Once the solution to Equation (6) is determined, the flow properties after the expansion are found from the
thermodynamic relations for isentropic flow:

p2

p1
=

[
1 + γ−1

2 M2
1

1 + γ−1
2 M2

2

] γ
γ−1

(7)

T2

T1
=

[
1 + γ−1

2 M2
1

1 + γ−1
2 M2

2

]
(8)

Prandtl-Meyer theory predicts that asM1 → ∞, the maximum angle through which the flow can be expanded
is 130.4◦. This implies that there are cases where the numerical solution of Equation 6 will not converge.
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Once the downstream pressures are calculated according to either Oblique Shock Theory or Prandtl-Meyer
Expansion Flow Theory, we can determine the aerodynamic forces acting on the vehicle. From Figure 3, the
pressure on the lower forebody can be resolved into its x and z body axis components

Fx,f = −pfLf tan τ1� (9)
Fz,f = −pfLf (10)

where Lf is the length of the forebody and pf is the static pressure on the forebody. The pitching moment
due to the forebody aerodynamic forces is

Mf = zf Fx,f − xf Fz,f (11)

where (xf , zf) are the coordinates of the aerodynamic center of the lower forebody panel relative to the
center-of-mass of the aircraft. The aerodynamic center occurs at the mid-point of the panel since the
pressure distribution on the lower forebody is uniform behind the oblique shock wave.

Likewise, the pressures on the upper surface of the aircraft give the following body-axes forces and
pitching moment

Fx,u = −pu Lu tan τ1u (12)
Fz,u = puLu (13)
Mu = zu Fx,u − xu Fz,u (14)

The length of the upper surface is Lu, the angle of the upper surface of the vehicle with respect to the x
body axis is τiu, and the coordinates of the center of the upper surface panel relative to the center-of-mass
are given by (xu, zu).

Scramjet Model

In the hypersonic flight regime, to produce the thrust necessary to maintain sustained flight one is limited to
either rocket propulsion or supersonic combustion ramjet engines (scramjets). Whereas the ramjet slows the
flow to subsonic speeds for combustion, the scramjet has supersonic flow in the combustion chamber. Around
Mach 5, the losses that are experienced bringing the flow to subsonic conditions in the ramjet are significant
and the scramjet becomes the more viable option for air-breathing propulsion. The primary advantage of
the scramjet engine over the rocket engine is that it offers an opportunity for increased payload. Unlike
the rocket engine, which requires that both the oxidizer and the fuel be carried on-board the vehicle, the
scramjet only requires that the aircraft carry the fuel. Therefore, the volume that is dedicated to carrying
an oxidizer for the rocket can now be used for payload. However, one downside of the scramjet is that it
is only operable in the hypersonic regime (Mach numbers � 5). To overcome this, one concept that has
been proposed is the rocket-based combined-cycle propulsion system that marries the rocket, ramjet, and
scramjet engines.8 This propulsion system accommodates all phases of flight from subsonic to supersonic to
hypersonic to orbital.

The scramjet used for this model is shown in Figure 4 and is identical to that used by Chavez and
Schmidt.3 The conditions given at the engine inlet (station 1) are primarily determined by the Mach number
and angle-of-attack at which the aircraft is flying. These parameters determine, in part, the properties of
the bow shock. The flow through the diffuser is assumed to be isentropic (i.e., without loss). The two
control variables that determine the thrust setting are the diffuser area ratio, Ad, and the heat addition
in the combustion chamber, ΔT0. Controlling Ad allows one to modulate the Mach number and the static
pressure of the air entering into the combustion chamber. Ideally, the air will remain supersonic to avoid
significant ram drag penalties. Because the air entering the combustor is supersonic, the heat release due to
fuel combustion reduces the Mach number of the airstream that is passing through the engine. Care must
be taken to ensure that too much heat is not added in order to prevent the flow through the engine from
becoming thermally choked.

In the diffuser, we apply the continuity equation (conservation of mass) to determine the Mach number
at the diffuser exit/combuster inlet (station 2) given the diffuser inlet Mach:

[1 + γ−1
2 M2

2 ]
γ+1
γ−1

M2
2

= A2
d

[1 + γ−1
2 M2

1 ]
γ+1
γ−1

M2
1

(15)
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Figure 4. Scramjet Cross Section

The pressure and temperature at station 2 are determined by Equations (7) and (8).
The combustor is modelled as a constant-area, frictionless duct with heat addition. The Mach number

at the combustor exit (station 3) is given by

M2
3 [1 + 1

2 (γ − 1)M2
3 ]

(γM2
3 + 1)2

=
M2

2 (1 + 1
2 (γ − 1)M2

2 )
(γM2

2 + 1)2
+

M2
2

(γM2
2 + 1)2

ΔT0

T2
(16)

where ΔT0 is the change in total temperature in the combustor due to the fuel burn. The pressure and
temperature at the combustor exit are

p3 = p2
1 + γM2

2

1 + γM2
3

(17)

T3 =
M2

3

M2
2

(1 + γM2
2 )2

(1 + γM2
1 )2

(18)

The flow, upon leaving the combustor, enters a converging/diverging, isentropic nozzle that will ultimately
increase the exit Mach number. The nozzle area ratio, An is assumed to be fixed. The exit Mach number is
given by

[1 + γ−1
2 M2

e ]
γ+1
γ−1

M2
e

= A2
n

[1 + γ−1
2 M2

3 ]
γ+1
γ−1

M2
3

(19)

while the pressure and temperature at the exit plane are given by Equations (7) and (8).
The thrust is calculated by applying the Momentum Theorem from fluid mechanics to a control volume

that encloses the scramjet engine. The thrust is given by

T = ṁa(Ve − V∞) + (pe − p∞)
Ae

b
− (p1 − p∞)

Ae/b

AnAd
(20)

where T is the engine thrust, ṁa is the mass flow of air through the engine, Ve is the exit velocity of the air,
V∞ is the velocity of the freestream, pe is the pressure at the exit plane of the engine, p1 is the pressure at
the engine inlet plane, p∞ is the freestream pressure, Ae/b is the exit area per unit span, An is the nozzle
area ratio, and Ad is the diffuser area ratio. It has been assumed that the mass flow of the fuel is negligible
when compared to the mass flow of air.

An important parameter in the thrust equation, Equation (20) is the mass flow term, ṁa. The amount of
mass flow captured by the engine inlet is a function of the shock angle, as shown in Figure 5. Typically, the
aircraft geometry is designed with the intent to have the bow shock impinge upon the engine inlet lip at the
design cruise condition. This will result in maximum mass flow through the engine module. At off-design
conditions where the bow shock no longer impinges on the lip (cruise Mach less than the design Mach at the
same angle-of-attack), there will be mass flow spillage as the shock will be positioned in front of the cowl lip.
Therefore, we have added a translating cowl lip that can be positioned instantaneously to be coincident with
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the bow shock. By positioning the cowl lip in such a manner, we can maximize the mass flow through the
engine for any off-design flight condition. The penalty to be paid for this is that the lift, drag and pitching
moment are affected by the length of the cowl lip. When the cowl lip intersects the shock, a second oblique
shock occurs under the engine nacelle for positive angles-of-attack. For negative angles-of-attack, there is
a Prandtl-Meyer Expansion Fan that turns the flow parallel to the nacelle. The pressure can be calculated
using the methods given in the previous section. The only contribution is to the z-axis body force:

Fz,n = −pnLn (21)

where pn is the pressure on the bottom of the nacelle, and Ln is the length of the nacelle. The nacelle length
Ln is the sum of the nominal nacelle length with the door completely retracted, Ln0, and the length of the
translating lip Ln = Ln0 + Ldoor. The length of the cowl door is

Ldoor = L1 − (L1 tan τ1� + hi) cot(θs − α) (22)

where hi is as defined in Figure 3. The pitching moment created by Fz,n is

Mn = −Fz,n[xn0 +
1
2
(Ldoor − Ln0)] (23)

Bow Shock

A1

A0

As = A1 − A0

M∞

Figure 5. Capture Area/Mass Flow Spillage

Engine Inlet Turning Force

The airflow, after passing through the oblique shock, is parallel to the forebody; therefore, it must be turned
parallel to the engine centerline. As a result, the force imparted by the air on the aircraft is

Fx,inlet = γM2
1 p1(1 − cos(τ1� + α))

Ae

b

1
AdAn

(24)

Fz,inlet = γM2
1 p1 sin(τ1� + α)

Ae

b

1
AdAn

(25)

Minlet = zinletFx,inlet − xinletFz,inlet (26)

where p1 is the pressure after the bow shock, M1 is the Mach number after the bow shock, and (xinlet, zinlet) is
the location of the nominal inlet location relative to the center-of-mass. The mechanism for turning the flow
axial to the engine is another oblique shock. There will be a resulting rise in static pressure and temperature
with a decrease in Mach number as the flow crosses this shock. The new pressures and temperatures are
calculated using the expressions given previously.

Aftbody Pressure

The pressure acting on the aftbody of the vehicle is due to the external expansion of the exhaust from the
scramjet engine. The aftbody forms the upper part of a nozzle, while the shear layer that results from the
interaction of the exhaust plume with the freestream flow forms the lower surface. The pressure distribution

7



along the aftbody is then is a function of the position of the shear layer. The shear layer is formed where the
pressure in the plume is balanced by the freestream pressure. A reasonable approximation for the pressure
at any point on the aftbody is given by Chavez and Schmidt3

pa =
pe

1 + xa/La(pe/p∞ − 1)
(27)

where La is the length of the aftbody panel as shown in Figure 3 and xa is the distance along the aftbody
panel.
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Figure 6. Comparison of Approximate and Exact Pressure Acting on the Aftbody of the HSV

A comparison of the approximate pressure, as given by Equation (27), to the pressure calculated after
determining the exact position of the shear layer is given in Figure 6. It is readily evident that the approxi-
mation is of sufficient accuracy to model the aftbody pressure. The advantage of using Equation (27) is the
computational efficiency that it affords, as the determination of the shear layer position requires a rather
complicated algorithm.

The aftbody pressure makes a contribution to the lift and also acts to offset the drag of the forebody.
The x and z body axis forces are

Fx,a = p∞La
pe

p∞

ln pe

p∞
pe

p∞
− 1

tan(τ2 + τ1,u) (28)

Fz,a = −p∞La
pe

p∞

ln pe

p∞
pe

p∞ − 1
(29)

The pitching moment due to these forces is assumed to act at the mid-point of the aftbody panel

Ma = za Fx,a − xa Fz,a (30)

Here (xa, za) are the coordinates of the mid-point of the aftbody relative to the center-of-mass of the vehicle.

Control Surface Model

As shown in Figure 3, there is a control surface available that helps to control the pitching moment acting
on the aircraft along with lift and drag. The control surface is modelled as a flat plate that is hinged at its
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mid-chord point so the entire surface deflects. The pressures on the upper and lower surfaces of the elevator
are determined by the incidence of the control surface with the flow. In any case, on one side of the control
surface, the pressure will determined by Prandtl-Meyer flow and the pressure on the second side will be
determined by oblique shock theory. The resultant force acts at the mid-chord of the control surface. The
x and z body forces,are

Fx,c = −(pc,� − pc,u) sin(δe)Se (31)
Fz,c = −(pc,� − pc,u) cos(δe)Se (32)

(33)

The pressure on the upper surface is pc,u, the pressure on the lower surface is pc,�, δe is the control surface
deflection relative to the freestream flow, and the area of the control surface is Sc. For the case where δe > 0,
Fz,c < 0 (the control surface is generating positive lift) and Fx,c < 0 (the drag due to the control surface
being deflected acts opposite the x-body axis). On the other hand, if δe < 0, we get Fx,c < 0 and Fz,c > 0
which is as expected.

The pitching moment due to the deflection of the control surface is

Mc = zc Fx,c − xc Fz,c (34)

where (xc, zc) are the position of the midpoint of the control surface.
Once all of the forces and moments due to the aerodynamics have been determined, the resultant body

forces and the moment are summed from the individual components. The forces are

Fx =
N∑

j=1

Fx,j (35)

= Fx,f + Fx,n + Fx,a + Fx,u + Fx,c + Fx,inlet (36)

Fz =
N∑

j=1

Fz,j (37)

= Fz,f + Fz,n + Fz,a + Fz,u + Fz,c + Fz,inlet (38)

The pitching moment is the sum of the forces acting on each component of the vehicle along with the
pitching moment due to the engine thrust. From Figure 3, it is readily apparent that the thrust force has
a profound influence on the pitching moment since it located well below the center-of-mass of the vehicle.
The total moment acting on the vehicle is then

M = Mf +Mu +Mn +Ma +Mc +Minlet + zT T (39)

The forces Fx and Fz can be translated into the lift and drag acting on the aircraft by using the following
coordinate transformation

Rα =

⎡
⎢⎣

cosα 0 sinα
0 1 0

− sinα 0 cosα

⎤
⎥⎦ (40)

The rotation matrix Rα carries the body axis frame to the stability axis. The stability axis system is aligned
such that it x axis is coincident with the velocity vector. The lift and drag are then

L = Fx sinα− Fz cosα (41)
D = −Fx cosα− Fz sinα (42)

while the pitching moment remains unchanged.
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Flexible Aircraft Model

For HSV type vehicles, flexibility effects play an important part in the aerodynamics of the aircraft. From
the equations derived in the previous section, it is evident that the structural bending will have an effect on
the angle of the bow shock, thereby affecting the pressures downstream of the shock. In particular, deflection
of the forebody affects the thrust not only through changes in pressure due to the moving shock, but also
through the effects of massflow spillage (assuming that there is no way to control the massflow through the
engine.).

Vibrational Model

For the dynamic simulation, a vibrational model of the fuselage is necessary. The fuselage model is assumed
to be comprised of two cantilever beams, one pointing forward and one aft, that are clamped at the center-
of-mass of the fuselage. Thus, the root of each beam will rotate and translate according to the motion of the
aircraft’s center-of-mass. Only the transverse displacements of the beams are of interest, and it is assumed
that the displacements are sufficiently small such that Hooke’s Law is valid. We will denote the displacement
and rotation of the forward beam with a subscript f and the displacement and rotation of the aft beam will
be denoted with a subscript a.

It can be shown9 that the transverse vibration of a cantilever beam with constant EI and constant mass
density m̂ satisfies the following partial-differential equation:

EI
∂4w(x, t)
∂x4

+ m̂
∂2w(x, t)
∂t2

= 0 (43)

Assuming that the solution takes the form w(x, t) = φ(x)f(t), then Equation (43) can be separated into two
ordinary differential equations:

EI
d4φ(x)
dx4

− ω2m̂φ(x) = 0 (44)

d2f(t)
dt2

+ ω2f(t) = 0 (45)

Defining β4 = ω2m̂/(EI), Equation (44) takes the form

d4φ(x)
dx4

− β4φ(x) = 0 (46)

The solution to Equation (46) is

φ(x) = A sinβx+B cosβx+ C sinhβx+D coshβx (47)

For the forward-facing beam, we apply the following boundary conditions:

φf (x̄) = 0 (48)
φ′f (x̄) = 0 (49)

φ′′f (0) = 0 (50)

φ′′′f (0) = 0 (51)

and we obtain the following frequency equation:

cosβx̄ coshβx̄ = −1 (52)

Equation (52) has an infinite number of solutions, βk that can only be found through the application of
numerical methods. The mode shapes for the forward beam corresponding to the frequencies can be shown
to be

φf,k(x) = Af,k[(sinβf,kx̄− sinhβf,kx̄)(sin βf,kx+ sinhβf,kx)
+ (cosβf,kx̄+ coshβf,kx̄)(cos βf,kx+ coshβf,kx)]

(53)
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The mode shapes φf,k(x) form an orthogonal set of solutions and we choose the value of Af,k such that

∫ x̄

0

m̂φf,j(x)φf,k(x) dx =

⎧⎨
⎩

0 if j �= k

1 if j = k
(54)

For the aft beam, the boundary conditions are

φa(0) = 0 (55)
φ′a(0) = 0 (56)

φ′′a(L − x̄) = 0 (57)
φ′′′a (L − x̄) = 0 (58)

Although the fixed end of the beam is at the center-of-mass, we have defined the boundary conditions such
that the beam is of length L − x̄ and the clamped end is at the origin. Applying the boundary conditions
results in the same frequency equation as before (Equation (52)). The corresponding mode shape, written
on the domain x ∈ [x̄, L] is

φa,k(x) = Aa,k[(sinβa,k(L− x̄) − sinhβa,k(L− x̄))(sinβa,k(x− x̄) − sinhβa,k(x− x̄))
+ (cos βa,k(L − x̄) + coshβa,k(L − x̄))(cos βa,k(x− x̄) − coshβa,k(x− x̄))]

(59)

The mode shapes φa,k(x) also form a mass-normalized, orthogonal set of solutions.
The displacement and slope of the beam, determined from the mode shapes above, are shown in Figure 7
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Figure 7. Beam Mode Shape

Forced Response

For the case where there are distributed and concentrated loads on the beam, Equation (43) becomes

EI
∂4w(x, t)
∂x4

+ m̂
∂2w(x, t)
∂t2

= p(x, t) + Pj(t)δ(x− xj) (60)

From the expansion theorem, the solution of Equation (60) is

w(x, t) =
∞∑

k=1

φk(x)ηk(t) (61)

11



where ηk(t) is the generalized modal coordinate. It can be shown that ηk satisfies the differential equation10

η̈k + ω2
kηk = Nk(t) (62)

where the generalized modal force associated with the kth mode shape is

Nk(t) =
∫ L

0

φk(x)p(x, t) dx +
l∑

j=1

φ(xj)Pj(t) (63)

In Equation (63), l is the number of concentrated forces applied to the beam. The solution to Equation (62)
for the kth frequency is10

ηk(t) =
1
ωk

∫ t

0

Nk(τ) sin(ωk(t− τ)) dτ + ηk(0) cosωkt+ η̇k(0)
sinωkt

ωk
(64)

The initial conditions ηk(0) and η̇k(0) are given by Meirovitch 10 as

ηk(0) =
∫ L

0

m̂φk(x)w(x, 0) dx (65)

η̇k(0) =
∫ L

0

m̂φk(x)ẇ(x, 0) dx (66)

Lagrange’s Equations for a Flexible Aircraft

In this section, we focus on the derivation of the equations of motion for a flexible aircraft. There are
several approaches in the literature that discuss the determination of the equations-of-motion for a flexible
aircraft. Bisplinghoff and Ashley derive the equations-of-motion for an “unconstrained vehicle.” They show
that the rigid body and the vibrational mode shapes are orthogonal. Waszak and Schmidt,11 use a “mean
elastic axis” that physically decouples the rigid-body equations and the equations of motion that describe
the vibration of the aircraft. In both the Waszak and Bisplinghoff models, the coupling of the rigid body
rotation and translation with the structural modes is implicit as the effects of the bending are only present in
the forces and moments. This means that the mean axis assumption does not capture the inherent coupling
between the aircraft’s pitch acceleration, the aircraft’s normal acceleration, and the transverse vibration
of the aircraft. Papers by Olsen12 and Buttrill, et.al.13 each take into account the coupling between the
aircraft’s linear and angular accelerations with the elastic modes. Olsen makes no assumption on how the
mode shapes are represented, while Buttrill assumes a lumped-mass approach. Finally, Meirovitch and
Tuzcu14 give another approach that attempts unify the disciplines of dynamics, controls, aeroelasticity, and
aerodynamics. Meirovitch gives a rather lengthy argument against the use of mean elastic axes and for
the need to ensure that the rigid-body and elastic mode coupling is present. Meirovitch then presents a
derivation of the equations-of-motion for an elastic aircraft based upon Lagrange’s Equations. The approach
that we take most closely follows that of Meirovitch.

For our derivation of the equations-of-motion, we will assume that there are no torsional vibrations, no
longitudinal or “pogo” vibrations, and that the mass of the aircraft is constant. To derive the equations-
of-motion for this system, we shall use Lagrange’s Equations. Recall that the Lagrangian is defined as
L = T − V where T is the kinetic energy of the system and V is the potential energy. If we assume that
there are n generalized coordinates, qi, then Lagrange’s Equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi, i = 1, . . . , n (67)

where Qi is the generalized force associated with generalized coordinate qi. The generalized force can be
either a force or moment, depending upon whether the generalize coordinate qi represents a translation or
rotation. The generalized forces are determined from the following equation for the virtual work due to
non-conservative forces:

δW =
n∑

i=1

Qiδqi (68)
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where δqi is the variation of the ith generalized coordinate. Alternatively, the ith generalized force can be
determined from Qi =

∑N
i=1 f i · ∂r/∂qr where f i is the ith applied non-conservative force and N is the

number of non-conservative forces applied to the body.
Let rP (t) denote the position of a point P in a flexible body. We can express this position in terms of

the inertial position of the center-of-mass, r0(t) and the position of P relative to the center-of-mass in some
set of body-fixed axes, rP/0(t).

rP (t) = r0(t) + rP/0(t) (69)

where

rP/0 = ρ(t) + d(t) (70)

In Equation (70), ρ is the position of the point P in the undeformed body (i.e., if the body were perfectly
rigid) and is written in the body-fixed axes. The vector d denotes the position of point P relative to its
undeformed position and is also written in terms of the body axes.

To find the velocity of the point P , we differentiate Equation (69)

ṙP (t) = ṙ0 +
δrP/0

δt
+ ω × rP/0 (71)

where δrP/0/δt denotes that portion of the total derivative that involves only the derivatives of the compo-
nents in the body frame (i.e., δrP/0/δt is the time rate-of-change of rP/0 as seen by an observer who is fixed
in the body frame):

δrP/0

δt
= ẋ e1 + ẏ e2 + ż e3 (72)

We then form the kinetic energy:

T =
1
2

∫
B

ṙp · ṙp dm (73)

If we substitute Equations (71) and (70) into the Equation (73) we get

T =
1
2

∫
B

ṙ0 · ṙ0 + (ω × ρ) · (ω × ρ) + (ω × d) · (ω × d)+

δd

δt
· δd
δt

+ 2
(

ṙ0 · (ω × ρ) + ṙ0 · (ω × d) + ṙ · δd
δt

+

(ω × ρ) · (ω × d) + (ω × ρ) · δd
δt

+ (ω × d) · δd
δt

)
dm

(74)

We recognize the first term in Equation (74) as the kinetic energy due to the translation of the center-of-mass:
Ttrans = (1/2)mṙ0 · ṙ0. The second term is the kinetic energy due to the rotation of the undeformed body
about its center-of-mass: Trot = (1/2)ω · Iω. Making these substitutions, Equation (74) takes the form:

T =
1
2
m ṙ0 · ṙ0 +

1
2

ω · Iω +
1
2

∫
B

(ω × d) · (ω × d)+

δd

δt
· δd
δt

+ 2
(

ṙ0 · (ω × ρ) + ṙ0 · (ω × d) + ṙ · δd
δt

+

(ω × ρ) · (ω × d) + (ω × ρ) · δd
δt

+ (ω × d) · δd
δt

)
dm

(75)

The terms that remain in the integrand are those that arise due to the elasticity of the aircraft.
We now turn our attention to the remaining terms in the integrand and the determination of their

contribution to the kinetic energy. Note that the terms remaining in the integrand, with the exception of
the first two terms, indicate a significant coupling between the rigid body and the elastic modes. In order
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to evaluate the contributions of the aircraft’s elasticity to the remaining kinetic energy terms, d is written
in terms of the mode shapes of the body and the modal coordinates using the Expansion Theorem9

d =
∞∑

i=1

φy,i(u, v, w)ηy,i(t)e2 +
∞∑

i=1

φz,i(u, v, w)ηz,i(t)e3 (76)

and δd/δt is subsequently written as

δd

δt
=

∞∑
i=1

φy,iη̇y,ie2 +
∞∑

i=1

φz,iη̇z,ie3 (77)

where the mode shapes are given by φy,i(u, v, w), and φz,i(u, v, w) and (u, v, w) are the spatial coordinates,
in the e-frame, of the elemental masses making up the body. Also note that φy is the mode shape of the
lateral vibration, and φz is the mode shape of the transverse or normal vibration. The modal coordinates
of the ith mode shape are given by ηx,i, ηy,i and ηz,i. The mode shapes for a given modal coordinate are
orthogonal and mass-normalized such that

∫
B

φz,iφz,j dm =

⎧⎨
⎩

0, i �= j

1, i = j
(78)

We will also assume that ∫
B

φy,iφz,j dm = 0, ∀ (i, j) (79)

We continue our evaluation of the kinetic energy by considering the first term in the integrand:∫
B

(ω × d) · (ω × d) dm (80)

Let ω = Pe1 +Qe2 +Re3, and for the time being, let d = dye2 + dze3. Expanding the integrand gives:∫
B

P 2(d2
y + d2

z) +Q2d2
z +R2d2

y − 2QRdydz dm (81)

However,the angular rates are independent of the spatial coordinates (u, v, w) since all points in the body
have the same angular velocity; therefore, the angular rates P, Q, R can be taken outside the integral.
Making use of the fact that the mode shapes are orthogonal, Equation (81) becomes

P 2
∞∑

i=1

(η2
y,i + η2

z,i) +Q2
∞∑

i=1

η2
z,i +R2

∞∑
i=1

η2
y,i − 2QR

∞∑
i=1

∞∑
j=1

S(i,j)
yz ηy,iηz,j (82)

where
S(i,j)

yz =
∫

B

φy,iφz,j dm (83)

The term S
(i,j)
yz ηy,iηz,j is the change in Iyz due to the deformation of the elastic aircraft.

Next, we evaluate the term ∫
B

δd

δt
· δd
δt
dm (84)

From Equation (77), the integral becomes
∫

B

( ∞∑
i=1

φy,iη̇y,i

)2

+
( ∞∑

i=1

φz,iη̇z,i

)2

dm (85)

Recalling that the mode shapes are mass-normalized and orthogonal, we get the following expression for the
kinetic energy due to the bending of the fuselage:

∞∑
i=1

(η̇2
y,i + η̇2

z,i) (86)
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The remaining terms in the kinetic energy expression that are to be evaluated are due to the interaction
of the rigid body modes and the elastic modes. Under certain assumptions, these terms can vanish. Since
we are interested in the most general case, we will include the remaining terms. Examining the term

∫
B

ṙ0 · (ω × ρ) dm (87)

and applying the vector triple product identity a · (b × c) = c · (a × b) = b · (c × a) to this integral gives

(ṙ0 × ω) ·
∫

B

ρ dm = 0 (88)

where
∫

B
ρ dm = 0 is the center-of-mass in the body frame coordinates.

For the next term in the integrand,
∫

B
ṙ0 · (ω × d) dm, applying the vector triple product identity gives

(ṙ0 × ω)·
∫

B

d dm (89)

From the definition of d

(ṙ0 × ω)·
∫

B

∞∑
i=1

φy,iηy,ie2 +
∞∑

i=1

φz,iηz,ie3 dm (90)

Defining λy,i =
∫

B φy,i dm and λz,i =
∫

B φz,i dm gives

(ṙ0 × ω) ·
( ∞∑

i=1

λy,iηy,ie2 + λz,iηz,ie3

)
(91)

We leave the evaluation of the cross-product ṙ0 × ω for later.
The next term in the kinetic energy,

∫
B ṙ0 · δd/δt dm can be written using the definitions for λy,i andλz,i

and δd/δt as

ṙ0 ·
( ∞∑

i=1

λy,iη̇y,ie2 + λz,iη̇z,ie3

)
(92)

Again, we delay complete evaluation of the term until later.
The term,

∫
B(ω × ρ) · (ω × d) dm becomes

P 2
∞∑

i=1

(σy,iηy,i + σz,iηz,i) +Q2
∞∑

i=1

σz,iηz,i +R2
∞∑

i=1

σy,iηy,i−

QR

∞∑
i=1

(ψyz,iηz,i + ψzy,iηy,i) − PR

∞∑
i=1

ψxz,iηz,i + −PQ
∞∑

i=1

ψxy,iηy,i

(93)

where ψxz,i =
∫

B
uφz,i dm, ψzy,i =

∫
B
wφy,i dm, etc. and σz,i =

∫
B
wφz,i dm.

The term
∫

B(ω × ρ) · δd/δt dm can be determined using the previous definitions for ψxy,i, ψzy,i, etc.

∫
B

(ω × ρ) · δd
δt
dm =

∞∑
i=1

(Rψxy,i − Pψzy,i)η̇y,i +
∞∑

i=1

(−Qψxz,i + Pψyz,i)η̇z,i (94)

The final term in the kinetic energy expression can be shown to be

∫
B

δd

δt
· (ω × d) dm = P

∞∑
i=1

∞∑
j=1

S(i,j)
yz (η̇y,iηz,j − ηy,iη̇z,j) (95)

Note that under certain assumptions, Equation (95) will become zero.
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The total kinetic energy of elastic vehicle may now be written using the expressions given in Equa-
tions (82)-(95):

T =
1
2
mṙ0 · ṙ0 +

1
2
ω · Iω +

1
2

∞∑
i=1

(η̇2
x,i + η̇2

y,i + η̇2
z,i) +

1
2
P 2

∞∑
i=1

(η2
y,i + η2

z,i)+

1
2
Q2

∞∑
i=1

η2
z,i +

1
2
R2

∞∑
i=1

η2
y,i −QR

∞∑
i=1

∞∑
j=1

S(i,j)
yz ηy,iηz,j+

(ṙ0 × ω) ·
∞∑

i=1

(λy,iηy,ie2 + λz,iηz,ie3) + ṙ0 ·
( ∞∑

i=1

λy,iη̇y,ie2 + λz,iη̇z,ie3

)
+

P 2
∞∑

i=1

(σy,iηy,i + σz,iηz,i) +Q2
∞∑

i=1

σz,iηz,i +R2
∞∑

i=1

σy,iηy,i−

QR

∞∑
i=1

(ψyz,iηz,i + ψzy,iηy,i) − PR

∞∑
i=1

ψxz,iηz,i − PQ

∞∑
i=1

ψxy,iηy,i+

∞∑
i=1

((Rψxy,i − Pψzy,i)η̇y,i + (−Qψyz,i + Pψxz,i)η̇z,i + P

∞∑
i=1

∞∑
j=1

S(i,j)
yz (η̇y,iηz,j − ηy,iη̇z,j)

(96)

The potential energy of the body is comprised of the strain energy and the gravitational potential. We
write the potential due to gravity as

Vg = −mg · r0 (97)

and the strain energy is

Vs = −1
2

∫
B

δ2d

δt2
· d dm (98)

Substituting for δ2d/δt2,the strain energy becomes

Vs = −1
2

∫
B

(
∞∑

i=1

φy,iη̈y,ie2 +
∞∑

i=1

φz,iη̈z,ie3)·

(
∞∑

i=1

φx,iηx,ie1 +
∞∑

i=1

φy,iηy,ie2 +
∞∑

i=1

φz,iηz,ie3) dm

= −1
2

∫
B

∞∑
i=1

∞∑
i=1

φ2
y,iη̈y,iηy,i +

∞∑
i=1

φ2
z,iη̈z,iηz,i dm

(99)

Recognizing that the strain energy (i.e., stiffness) is independent of the loading on the body (see Reference 11),
then the following substitution can be made: η̈i = −ω2

i ηi where ωi is the natural frequency of the ith mode
shape. As a result, the strain energy becomes

Vs =
1
2

∞∑
i=1

(ω2
y,iη

2
y,i + ω2

z,iη
2
z,i) (100)

Finally, the potential energy can be written as:

V = −mg · r0 +
1
2

∞∑
i=1

(ω2
y,iη

2
y,i + ω2

z,iη
2
z,i) (101)

From this point forward, the determination of the equations-of-motion using Lagrange’s Equations for
the flexible aircraft is straight-forward since one is now left with taking derivatives of the Lagrangian with
respect to qi and q̇i and any subsequent algebraic simplification.
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Application of Lagrange’s Equations to the Determination of the Longitudinal
Equations of Motion for a Deformable Aircraft

Now we want to address the derivation of the equations-of-motion for the longitudinal dynamics of a flexible
aircraft. The structural model is assumed to consist of two cantilever beams fixed at the origin. One reason
for choosing this particular structural model was due to the fact that there was no available finite element
model of the vehicle structure. In addition, this particular choice for the elastic structure captures the
coupling between the pitch attitude and the normal acceleration with the elastic modes. The first beam will
point towards the nose of the vehicle and the second will point towards the tail. Each beam will be assumed
to deflect only in the z body-axis direction and the length of each beam will be assumed to be much larger
than the thickness (i.e., neglect any rotatory inertia effects). Furthermore, the deflections are assumed to
be small enough such that Hooke’s Law is valid. As will be evident, these assumptions greatly simplify the
kinetic energy term given by Equation 96.

The inertial frame will be denoted by the unit vector triad (n1,n2,n3), and the body-axes frame unit
vectors will be denoted by (e1, e2, e3). The inertial frame is oriented such that n1 points north, n2 points
east, and n3 = n1 ×n2 is positive down. The body-axes are oriented in the vehicle with e1 positive out the
nose, e2 positive out the right wing. The unit vector e3 = e1 × e2 is positive out the bottom of the aircraft.
Both sets of unit vectors form orthogonal triads.

e1

e2

e3n1

n2

n3

r0

Figure 8. Inertial and Body-Fixed Reference Frames

It is also assumed that the aircraft is flying wings level (no roll) and without sideslip so the longitudinal
and lateral-directional equations decouple. The n frame is carried into the e frame by the coordinate
transformation:

Rθ =

⎡
⎢⎣

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤
⎥⎦ (102)

The angular velocity of the aircraft is ω = Qe2 = θ̇n2. However, from the definition of Rθ, it is evident that
Q = θ̇.

The position of the center-of-mass is given in the n frame as r0 = Xn1 + Zn3 and in the e frame as:
r0 = xe1 + ze2 = (X cos θ − Z sin θ)e1 + (X sin θ + Z cos θ)e2. The velocity of the center-of-mass in the e
frame is ṙ0 = δrP/0/δt+ ω × rP/0 = (ẋ+Qz)e1 + (ż −Qx)e2 = Ue1 +We2

For the elastic modes of the aircraft, we are only interested in the first fuselage bending mode. The elastic
deformation of the fuselage is modelled by two cantilever beams that are fixed at the center-of-mass such
that they have no rotation or displacement relative to the center-of-mass. It is assumed that height of the
beam is negligible as compared to the length so that ρ = ue1 and d = de3. We denote the modal coordinates
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of the beams as ηf and ηa respectively. The displacement of each beam can be written as df =
∑∞

i=1 φf,iηf,i

and da =
∑∞

i=1 φa,iηa,i.
We can now write the kinetic energy of the aircraft:

T =
1
2
m

[
(ẋ +Qz)2 + (ż −Qx)2)

]
+

1
2
IyyQ

2 +
1
2
η̇2

a +
1
2
η̇2

f +
1
2
Q2(η2

a + η2
f )+

(ṙ0 × ω) · (λaηa + λfηf )e3 + ṙ0 · (λaη̇a + λf η̇f )e3 +Q2(σfηf + σaηa) −Q(ψf η̇f + ψaη̇a)
(103)

Making the substitution for ṙ0, noting that ṙ0×ω = −Q(ż−Qx)e1+Q(ẋ+Qz)e3, and using the assumption
that w ≈ 0 ⇒ σ ≈ 0 simplifies the kinetic energy to:

T =
1
2
m

[
(ẋ+Qz)2 + (ż −Qx)2)

]
+

1
2
IyyQ

2 +
1
2
η̇2

a +
1
2
η̇2

f +
1
2
Q2(η2

a + η2
f )+

Q(ẋ+Qz)(λaηa + λfηf ) + (ż −Qx)(λaη̇a + λf η̇f ) −Q(ψf η̇f + ψaη̇a)
(104)

To determine the potential energy, we can write the gravity in terms of the body-axes using the rotation
matrix Rθ:

g = gn3 (105)
= g(− sin θe1 + cos θe3) (106)

The gravitational potential is then

Vg = −mg · r0 (107)
= −mg(−x sin θ + z cos θ) (108)

For the strain energy, we again are only using the fundamental mode shape. It can be shown that the
strain energy is

Vs =
1
2

(
ω2

fη
2
f + ω2

aη
2
a

)
(109)

Thus, the total potential is

V = −mg(−x sin θ + z cos θ) +
1
2

(
ω2

fη
2
f + ω2

aη
2
a

)
(110)

The Lagrangian for the flexible aircraft is then

L = T − V

=
1
2
m

[
(ẋ +Qz)2 + (ż −Qx)2)

]
+

1
2
IyyQ

2 +
1
2
η̇2

a +
1
2
η̇2

f +
1
2
Q2(η2

a + η2
f )+

Q(ẋ+Qz)(λaηa + λfηf ) + (ż −Qx)(λaη̇a + λf η̇f ) −Q(ψf η̇f + ψaη̇a)+

mg(−x sin θ + z cos θ) − 1
2

(
ω2

fη
2
f + ω2

aη
2
a

)
(111)

Before proceeding with Lagrange’s equations, the virtual work needs to be determined. It is assumed
that the aerodynamic and propulsive forces acting on the aircraft (lift, drag, and thrust) are resolved into
their body-axis forces such that the forces acting on the aircraft are Fx in the e1 direction and Fz in the e3

direction. The moment about the origin of the inertial triad is (M + z Fx − xFx). For the elastic modes, the
modal forces due to the aerodynamics are given by

Nf =
∫

f

pf (u, t)φf (u) du+
n∑

j=1

φf (uj)Pf,j(t) (112)

Na =
∫

a

pa(u, t)φa(u) du+
n∑

j=1

φa(uj)Pa,j(t) (113)
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where pa(u, t) and pf(u, t) are the distributed forces (pressures) on the aft and forward beams respectively.
The concentrated forces are given by Pf and Pa. To include the effects of damping, we assume that the
damping force is proportional to the modal velocities η̇f and η̇a. The damping force is given as 2ζωη̇. The
virtual work given in the body axis frame is then

δW = Fxδx+ Fzδz + (M + z Fx − xFz)δθ + (−2ζωf η̇f +Nf )δηf + (−2ζωaη̇a +Na)δηa (114)

The generalized coordinates are x, z, θ, ηf , and ηa. Applying Lagrange’s Equations, and using the definitions
U

�= ẋ+Qz and W �= ż −Qx, we obtain the following set of differential equations that completely describe
the motion of the flexible vehicle:

mU̇ +mQW +mg sin θ + Q̇(λaηa + λfηf ) + 2Q(λaη̇a + λf η̇f ) = Fx (115)

mẆ −mQU −mg cos θ + λaη̈a + λf η̈f −Q2(λaηa + λfηf ) = Fz (116)

(Iyy + η2
a + η2

f )Q̇+ (U̇ +QW )(λaηa + λfηf ) + 2Q(ηaη̇a + ηf η̇f ) − ψaη̈a − ψf η̈f = M (117)

η̈f + (Ẇ −QU)λf − Q̇ψf + 2ζωf η̇f + (ω2
f −Q2)ηf = Nf (118)

η̈a + (Ẇ −QU)λa − Q̇ψa + 2ζωaη̇a + (ω2
a −Q2)ηa = Na (119)

In addition, we have the kinematic differential equations for the downrange and altitude:

Ẋ = U cos θ +W sin θ (120)

ḣ = U sin θ −W cos θ (121)

It is interesting to note that the parameters ψa, ψf , λa, and λf vanish if the structural model is unconstrained
(i.e., a free-free beam). In the case of an unconstrained structure, the flexural mode shapes are orthogonal
to the rigid body rotation, hence the integrals that capture the coupling between the rigid body motion and
the flexible modes are now zero. This in turn decouples the elastic modes and the rigid body modes and
one is left with a set of equations for the traditional rigid body motion (U̇ , Ẇ , Q̇), and a set for the flexible
modes. Because we have chosen a constrained beam to model the aircraft flexible modes, we must carry
along extra terms to account for the coupling. In addition, if one assumes an infinitely rigid structure such
that ηf = ηa = 0, we recover the body axis equations-of-motion for a rigid aircraft.

Stability Axis Equations-of-Motion

Since the aerodynamic forces are written in terms of the lift and drag acting on the vehicle, it is advantageous
to re-write the body-axis equations of motion in terms of the stability axes. The transformation matrix Rα,
defined in the previous section, that carries the body axes to the stability axes and the following definitions:
tanα �= W/U , V 2

T
�= U2 +W 2, V̇T = (UU̇ +WẆ )/VT , and α̇ = (UẆ −WU̇)/(U2 +W 2) are used to obtain

the stability axis equations-of-motion. The stability axis equations-of-motion are omitted for brevity, but
are easily obtained using any available software package that performs symbolic mathematics.

Modal Analysis

The vehicle was trimmed at Mach 8 and altitude of 85,000 ft, then subsequently linearized about this trim
condition. The open-loop poles of the linearized dynamics are given in Table 1. Note that the aircraft has
an unstable short period mode and an unstable phugoid mode. The time to double for the phugoid mode
is approximately 3600 sec. The altitude mode is stable, although it is a very slow mode. The structural
modes are comprised of two stable complex-conjugate pairs. Note the presence of a pair of high frequency
complex-conjugate poles. These two poles are attributed to the aeroelastic mode of the aircraft. The second
set of complex-conjugate poles are associated with the bending mode frequency of the fuselage ( 18 rad/sec)
since this is very close to the natural frequency of its first bending mode. Analysis of the eigenvectors tells
us that the most significant contributions are due to η̇a followed by η̇f for the first eigenvalue in Table 1.
For the second eigenvalue, the eigenvector is dominated by η̇f then η̇a. The eigenvectors for the short period
mode exhibit the expected contributions from α and Q, but there are even larger contributions from both
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Eigenvalue Damping Ratio Natural Freq. (rad/s) Mode
−2.70± 45.2j 0.0597 45.3 Aeroelastic
−0.376± 16.2j 0.0231 16.2 Flex
−1.95 1.00 1.95 Short Period
1.85 -1.00 1.85 Short Period
−1.45× 10−3 1.00 1.45 × 10−3 Altitude
1.90 × 10−4 ± 0.0294j −6.44× 10−3 0.0294 Phugoid

Table 1. Eigenvalues of Linearized System

State Aeroelastic Flex Short Period Short Period
Vt 0.0020∓ 0.0000j −0.0006± 0.0000j 0.1480 0.1472
α 0.0000± 0.0000j −0.0000∓ 0.0000j -0.0034 0.0038
Q −0.0008∓ 0.0000j 0.0000∓ 0.0000j -0.0049 -0.0052
h 0.0001± 0.0011j −0.0000∓ 0.0008j -1.0000 1.0000
θ 0.0000± 0.0000j −0.0000∓ 0.0000j -0.0036 0.0036
ηf 0.0008± 0.0145j −0.0013∓ 0.0568j -0.1523 0.1697
η̇f −0.6904∓ 0.0024j 0.9979∓ 0.0021j -0.2099 -0.2461
ηa 0.0012± 0.0209j 0.0003± 0.0266j -0.1047 0.1165
η̇a −0.9983± 0.0017j −0.4668∓ 0.0051j -0.1442 -0.1690

Table 2. Eigenvectors of Linearized System

η’s and η̇’s, highlighting the inertial coupling between normal acceleration, pitch rate, and the aeroelastic
modes of the aircraft.

The poles and zeros are shown in Figure 9 for a 2×2 system where the inputs are the elevator deflection,
δe, and the change in total temperature in the combustor, ΔT0. The outputs are the aircraft velocity, Vt,
and the flight-path angle, γ = θ− α. Note that there are two pairs of complex-conjugate transmission zeros
that are mirror images about the jω axis. These zero pairs are associated with the flexible mode of the
aircraft. The two real zeros seen in Figure 9 that are a mirror image about imaginary axis arise because
of the flight-path angle dynamics. To command an increase in flight path angle requires that the elevator
deflect trailing edge up to create a nose-up pitching moment. Deflecting the elevator trailing edge up will
reduce the lift on the tail, causing an initial drop in the flight-path angle and the altitude. The impact of
this low frequency right-half plane transmission zero is that it will severely restrict the bandwidth of the
flight control system.

Conclusions

A comprehensive, non-linear model of the aerodynamics, propulsion, and structural dynamics for a represen-
tative air-breathing hypersonic vehicle has been presented. The model was derived from first principles and
captures the interaction between the propulsion system, the aerodynamics, and the structural dynamics. The
equations-of-motion for the flexible aircraft were derived using Lagrange’s Equations and include the effects
of pitch acceleration and normal acceleration on the structural modes. The linearized aircraft model has
unstable short period and phugoid modes, and exhibits a high degree of coupling between the short period
and the first bending mode of the fuselage. We also showed that the aircraft model indicates that the flight
control system performance is limited due to the presence of a low-frequency right-half plane transmission
zero.
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Figure 9. Poles and Transmission Zeros of the Linearized System
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